An approximate subgradient algorithm for unconstrained nonsmooth, nonconvex optimization
نویسندگان
چکیده
In this paper a new algorithm for minimizing locally Lipschitz functions is developed. Descent directions in this algorithm are computed by solving a system of linear inequalities. The convergence of the algorithm is proved for quasidifferentiable semismooth functions. We present the results of numerical experiments with both regular and nonregular objective functions. We also compare the proposed algorithm with two different versions of the subgradient method using the results of numerical experiments. These results demonstrate the superiority of the proposed algorithm over the subgradient method.
منابع مشابه
An effective optimization algorithm for locally nonconvex Lipschitz functions based on mollifier subgradients
متن کامل
Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملAn inexact modified subgradient algorithm for nonconvex optimization
We propose and analyze an inexact version of the modified subgradient (MSG) algorithm, which we call the IMSG algorithm, for nonsmooth and nonconvex optimization over a compact set. We prove that under an approximate, i.e. inexact, minimization of the sharp augmented Lagrangian, the main convergence properties of the MSG algorithm are preserved for the IMSG algorithm. Inexact minimization may a...
متن کاملA proximal bundle method for nonsmooth nonconvex functions with inexact information
For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case when only inexact information about the function and subgradient values is available. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We examine the redistributed proximal bundle approac...
متن کاملA Proximal Bundle Method for Nonconvex Functions with Inexact Oracles
For a class of nonconvex nonsmooth functions, we consider the problem of computing an approximate critical point, in the case of inexact oracles. The latter means that only an inexact function value and an inexact subgradient are available, at any given point. We assume that the errors in function and subgradient evaluations are merely bounded, and in principle need not vanish in the limit. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Meth. of OR
دوره 67 شماره
صفحات -
تاریخ انتشار 2008